home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Cream of the Crop 1
/
Cream of the Crop 1.iso
/
PROGRAM
/
MATRIX04.ARJ
/
MATDET.C
< prev
next >
Wrap
Text File
|
1992-05-25
|
2KB
|
116 lines
/*
*-----------------------------------------------------------------------------
* file: matdet.c
* desc: determinant calculations
* by: ko shu pui, patrick
* date: 21 may 92 v0.3
* revi:
* ref:
* [1] Mary L.Boas, "Mathematical Methods in the Physical Sciene,"
* John Wiley & Sons, 2nd Ed., 1983. Chap 3.
*
*-----------------------------------------------------------------------------
*/
#include <stdio.h>
#include "matrix.h"
static double signa[2] = {1.0, -1.0};
/*
*-----------------------------------------------------------------------------
* funct: mat_minor
* desct: find minor
* given: A = a square matrix,
* i=row, j=col
* retrn: the minor of Aij
*-----------------------------------------------------------------------------
*/
double mat_minor( A, i, j )
MATRIX A;
int i, j;
{
MATRIX S;
double result;
S = mat_submat(A, i, j);
result = mat_det( S );
mat_free(S);
return (result);
}
/*
*-----------------------------------------------------------------------------
* funct: mat_cofact
* desct: find cofactor
* given: A = a square matrix,
* i=row, j=col
* retrn: the cofactor of Aij
*-----------------------------------------------------------------------------
*/
double mat_cofact( A, i, j )
MATRIX A;
int i, j;
{
double result;
result = signa[(i+j)%2] * A[i][j] * mat_minor(A, i, j);
return (result);
}
/*
*-----------------------------------------------------------------------------
* funct: mat_det
* desct: find determinant
* given: A = matrix
* retrn: the determinant of A
* comen:
*-----------------------------------------------------------------------------
*/
double mat_det( a )
MATRIX a;
{
MATRIX A, P;
int i, j, n;
double result;
n = MatRow(a);
A = mat_copy(a);
P = mat_creat(n, 1, UNDEFINED);
/*
* take a LUP-decomposition
*/
i = mat_lu(A, P);
switch (i)
{
/*
* case for singular matrix
*/
case -1:
result = 0.0;
break;
/*
* normal case: |A| = |L||U||P|
* |L| = 1,
* |U| = multiplication of the diagonal
* |P| = +-1
*/
default:
result = 1.0;
for (j=0; j<MatRow(A); j++)
{
result *= A[P[j][0]][j];
}
result *= signa[i%2];
break;
}
mat_free(A);
mat_free(P);
return (result);
}